UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32


Paper 32 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pag	ge 2		Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2010	0620	32		
i	In (a) , (b) and (c) , descriptions of chemical properties need not be detailed. If more than one answer is given in each section, mark the first one and ignore anything subsequent unless it contradicts what they have already written. No marks for reversing physical and chemical properties.							
((a)	prop	ertie	s should focus on a group 1 metal and not just meta	lls in general			
				AL soft / can be cut (with a knife) / low density / l r (heat or electricity) / shiny (when freshly cut) / mall				
		<u>vigo</u> oxid	<u>rousl</u> ation	AL react with water (not steam) / (very) reactive / forms an state or oxidation number or valency of $+1$ / has one ionic compounds on its own.	alkaline or basi	c oxide / fixed		
((b)	prop	ertie	s should focus on a transition metal				
				AL hard / high density / dense / high mp or bp / (goo nalleable / ductile / silver or grey or lustrous or shiny	,	at or electricity) / [1]		
		com	poun	AL more than one oxidation state or valency (accep eds or ions (not coloured on its own) / forms complete ctive than group 1	- ,			
((c)			AL colourless <u>gas</u> / yellow <u>gas</u> mic molecules		[1]		
		form stab allov acid	le) / 1 w dew whe	AL most reactive halogen / very reactive / forms ion alent fluorides / bonds with non-metals / powerful or fixed oxidation state or valency of -1 colourised when reacts with alkene) / forms F ⁻ ions in reacted with hydrogen / hydride is acidic ching agent	xidant / gains on	e electron (to be		
2 ((a)			mes are proteins / come from living organisms / biolenzymes are living or natural	logical (catalysts) [1]		
				ohydrates have 2H:1O ratio ain elements of water		[1] [1]		
				ain water = [1] ss they state that carbohydrates contain water, this i	response scores	2 or 0		
((b)	con	d sar	O- linkage ne correct monomer (this mark is lost if 2 different b ntinuation (i.e. bonds at both ends)	oxes are shown)	[1] [1] [1]		
((c)		(con	centration or amount or mass etc.) of starch decreas centration etc.) of starch becomes zero / all starch g ur (intensity) indicates how much starch is present (o	one	[1] [1] [1]		
				me <u>denatured / destroyed</u> enzymes killed / don't work / saliva denatured		[1]		

	Page 3		Mark Scheme: Teachers' version	Syllabus Pape	r	
			IGCSE – May/June 2010	0620 32		
3	(a) (i)	red brown or orange to colourless not just bromine decolourised				
		yello	ow (not dark) / white solid / precipitate / goes cloudy vn to yellow with no mention of solid/precipitate scor		[1]	
	(ii)	Br ₂ +	+ Na₂S → 2NaBr + S		[1]	
	(iii)	sulfic	for two comments de (ion) / <u>sulfur</u> (ion) loses electrons sodium sulfide		[1]	
		bron	nine accepts them		[1]	
	(b) (i)		ation redox		[1]	
	(ii)	hydr not	rogen / H ₂ H		[1]	
	(iii)	iron((II) hydroxide / ferrous hydroxide		[1]	
	(iv)	4Fe($(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$		[1]	
	(v)		ation number or state or valency increases / electro gains oxygen	n loss / Fe ²⁺ to Fe ³⁺	[1]	
	(vi)	zinc not j zinc zinc zinc zinc zinc elect	rificial protection or zinc is sacrificed / corrodes not iron or zinc corrodes therefore iron do just zinc rusts is oxidised in preference to iron / reacts with oxygen and water in preference to iron / more reactive or electropositive than iron / forms ions more readily than iron or zinc loses electrons move on to iron / is cathode or zinc is anode /	l	ı /	

[3]

any three

Page		e 4		Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2010	0620	32		
4	(a)	(i)	same molecular formula / same number of C and H atoms different structural formula or structure same compound = [1]					
	(ii)	corre	ect formula of but-2-ene / methylpropene / methyl c	yclopropane	[1]		
	(i	(iii) bromine / bromine water / aqueous bromine brown to colourless not clear stays brown brom ide loses the first mark only				[1] [1] [1]		
			from	alkaline potassium manganate(VII) purple/pink to green/brown s purple		[1] [1] [1]		
			from	acidic potassium manganate(VII) purple/pink to colourless not clear s purple		[1] [1] [1]		
				gh temperature (temperature need not be stated, but above)	t if it is stated it m	ust be [1]		
	2	zeo	lite / a	need not be named, but if they are named accept a aluminosillicates / silicon dioxide) el/platinum	ny metal oxide or	[1]		
			2)dibromobutane umbers given must be correct					
	l I	outa outa	ane anol	outan-1-ol or butan-2-ol not but-1-ol / but-1-anol / bu	thanol	[1] [1]		
5			tional illatior			[1] [1]		
	(b)	(i)	0=0	/ oxygen(–)oxygen / H–H / hydrogen(–)hydrogen		[1]		
	(ii)		/ oxygen(–)hydrogen / OH / bond between hydroge H-O-H	n and oxygen	[1]		
	(i	ii)	endo	othermic.		[1]		
	(c)	(i)	/ no g	ollution / no CO / no CO ₂ / no oxides of nitrogen / <u>or</u> greenhouse gases / no global warming s not use up fossil fuels / water is not a finite resourd ce of energy / hydrogen is renewable / available fro	e / water is a rene	[1] ewable		
	(ii)	obtai probl smal finite	ining hydrogen from water requires fossil fuels lems / limited range of vehicles available / gaseo ll amount of energy per unit volume / methane as e / lack of distribution network expensive / anything regarding safety / flammability	/ storage proble us nature means a source of stea	ms / transport		

	Page 5		j	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2010	0620	32
6	(a)	(i)	Tl ₂ S			[1]
		(ii)	T <i>I</i> C <i>l</i>	3		[1]
	(b)			ntrifuge / decant e precipitate		
				olid / heat the solid (in oven) / press between filter	paper	[3]
				stated but not in correct order = [2]		
		two	outc	of three stated in any order = [1]		
	(c)	(i)	silve	er chloride / silver bromide		[1]
			phot	ography / cameras / films / photo chromic lenses /	sunglasses	[1]
		(ii)		ease distance between lamp and paper or put lamp a screen or translucent or semi-opaque material be	_	
			use	a less powerful or low voltage or dim lamp /	etween them /	
			lowe any	er the temperature two		[2]
	(d)	(i)	thali	um sulfate + ammonia + water		[1]
		(ii)		$OH + H_2SO_4 \rightarrow Tl_2SO_4 + 2H_2O$		[2]
				palanced = [1] rrect formula = [0]		
	((iii)	gree	en <u>precipitate or solid</u> (ignore shades of green but n	ot bluey green etc.)	[1]
			Fe ²⁺	+ 2OH ⁻ → Fe(OH) ₂ accept multiples		[1]
7	(2)	800	lium i	is expensive / difficult to obtain sodium (from soc	dium chloride) / pr	obleme aettina
•	(a)			y / hard to extract sodium / high energy costs in ext		[1]
	(b)	(i)		ice temperature / reduce melting point (to 900/10 ed, but if it is stated it must be within the range	000°C) temperature	e need not be
				er conductivity / solid aluminium oxide does not con ninium oxide is insoluble in water any two	nduct	[2]
		/ii\		→ O ₂ + 4e ⁻		[2] or [0]
		. ,				
		(III)	they	burn (away) / react with oxygen / form carbon diox	iide	[1]
	(c)	hyc	lroger	n formed / aluminium above hydrogen in reactivity s	series / H ⁺ discharge	ed
	` ,	in p	refere	ence to Al^{3+} / aluminium is more reactive than hydrom more reactive than carbon / carbon cannot reduce	ogen	[1]
		alu	miniu	m is higher than carbon in the reactivity series / car		
				m oxide / carbon doesn't <u>displace</u> aluminium son is essential for mark		[1]

ı ay	age o		Mark Ocheme: Teachers Version	Oyllabus	i apei		
			IGCSE – May/June 2010	0620	32		
(a) ((i) accept all metals excluding Group I (lithium is acceptable) not lead accept silver						
(i			trite / nitrate(III) nitride			[
(b) (` '	not	hermic reverse reaction is endothermic as the question ask			[
		high	d forward reaction favoured by low temperature / revitemperature ond mark only scores if exothermic is correct.	erse reaction fav	oured by	[
(i	ii)	•	tion of equilibrium to right / forwards / more products ause this side has smaller volume / fewer moles	/ more N ₂ O ₄ / lig	hter colour	[
i f	(c) if the final answer is between 86–89% award all 4 if the final answer is between 66–67% award 3 marks (M _r of 32 must have been use for all other answers marks can be awarded using the mark scheme as below and ecf if necessary					yir	
r r	num mas mas	nber on ss of one ss of l	of moles of O_2 formed = 0.16/24 = 0.0067/0.00667 of moles of Pb(NO ₃) ₂ in the sample = 0.0133/0.013 one mole of Pb(NO ₃) ₂ = 331 g lead(II) nitrate in the sample = 4.4(1) g	or 1/75			

Syllabus

Paper

[4]

Mark Scheme: Teachers' version

percentage of lead(II) nitrate in sample = 88.3% (allow 88–89)

if mass of lead(II) nitrate > 5.00 only marks 1 and 2 available

If divides by 32 (not 24) only last 3 marks can score consequentially

mark ecf in this question but not to simple integers